关于地铁施工监控系统的信息

时间:2023年04月16日 阅读: 127
地铁使用的动环监控系统的有哪些优势? 首先需要一款高安全、稳定可靠、智能的满足大数据要求的机房环境监控系统。最重要的是可以降低运维管理人员的负担,提腔冲高运维效率。以中国广东省深圳市的深圳地铁为例。深...

地铁使用的动环监控系统的有哪些优势?

首先需要一款高安全、稳定可靠、智能的满足大数据要求的机房环境监控系统。最重要的是可以降低运维管理人员的负担,提腔冲高运维效率。以中国广东省深圳市的深圳地铁为例。深圳计通依颤袭据深圳地铁建设需求,对沿线站点内警用通信机房搭建动力环境监控系统。系统与前端各智能环境设备进行实时通讯交互,通过智能监控、分析、控制,并以多样化的报警处理机制和友好的展现方式,使机伍洞歼房运维人员及时了解机房设备运行状况,实现统一监控、统一管理、统一展示的运维管理目的,系统具备稳定、可靠、安全的特性,实现数据机房7*24不间断的系统监控及运行保障。

深圳地铁10号线黑科技即将来袭,实现多个全国第一

深圳地铁10号线

是深圳轨道交通网络中的

又一条南北大动脉

城市主干线

即将于8月开通

为市民提供便捷出行服务

从规划之初

这条线路就被赋予了

沟通深圳南北

分担既有地铁线路压力

均衡城市路网客流的责任与使命

不仅要解决关键的扩容问题

还要在安全性能

运行效率等方面

做出进一步的优化与革新

面对高难度目标

深圳地铁坚持创新驱动

不断总结推演经验做法

积极应用新思路、新概念

引入新材料、新工艺、新工法

破解重重难题

实现了2个“深圳第一”

3个“全国首创”

将深圳轨道交通建设

推向了更高的水平

考虑到平湖、华为、坂田片区

强大的客流潜力

对地铁10号线的运载能力

提出了更高的要求

为了提高线路运力

深圳地铁10号线

由6A编组调整为8A编组

成为深圳首条南北向

采用8A编组的线路

10号线运力调整后

每辆列车载客量从1608人

增至2144人

增幅达33%

运能从每小时4.82万人

增至5.79万人

扩能20%

通车后将大大缓解

福田中心区至坂田段的交通压力

此外,地铁10号线起终点均预留

‘南联北拓’延伸条件

是深圳实现‘东进战略’

及‘南联北拓’的重要交通支撑

线路的增编扩能

可以大大降低后期线路运能不足

以及换乘站与换乘能力不匹配等问题

在大幅改善公共出行条件的同时

有利于促进城市布局合理化

满足深圳建设“双区”规划的迫切需求

深圳地铁10号线跨度长

规模大、难点多

对施工技术及各方面安全要求极高

对此,深圳地铁通过对

TBM轨道建设技术的多点突破

推动线路建设安全高效进行

地铁10号线上穿下跨

目前所有运营地铁线路

还要多次穿越公路、铁路

河流和既有构筑物

如何在保证既有线路、公路

铁路运营安全的条件下进行穿越

是10号线建设过程中

面临的一大难题

其中,孖岭站—雅宝站区间

采用双护盾TBM施工

是深圳地铁首次运用TBM进行施工

该区段岩层硬度高

且要下穿鸡公山和繁忙的厦深铁路

是全线的控制性区段之一

深圳地铁通过大量调研推演与论证

最终成功运用TBM工法

完成了掘进任务

线路建设期间

共穿越了肆冲唤大小地质破碎带15处

较大地质断层2处

同时还克服了

不良地层涌水涌泥

岩石坚硬换刀频率高

长距离运输等复杂技术难题

同时,这也是深圳地铁

首次创新采用双护盾TBM法施工

相较于传统工法

具有安全、高效、环裂凯保的优点

该工法能在岩石地带

实现“不爆破”施工

工作效率是传统钻爆法的5-8倍

在确保安全的情况下

节省工期约180天

充分诠释了创新驱动下的“深圳速度”

不仅如此,深圳地铁10号线

建设过程中形成的TBM技术应用方案

还为TBM法在深圳轨道交通

建设领域的推广和应用提

供了理论指导和技术储备

为深圳日后新地铁

新干线的建设夯实了基础

安全、高效、有序的地铁运营

离不开强有力的后勤保障

在10号线的规划建设中

深圳地铁还充分考虑了

列车停放和管养需求

将打造综合性多功能的

后勤保障基地纳为重点攻坚对象

高标准推进凉帽山车辆段建设

凉帽山车辆段是地铁工程系统的

车辆停车和检修基地

集联合库检修库

停车列检库、镟轮

工程车存放维修、防洪调蓄

文体公园等功能于一体

建筑面积达24.6万平米

5层建筑综合体

可提供40列位地铁车辆

存放及相应检修服务

另外,凉帽山车辆段

也是10号线的重点,难点工程

因途径二级水源保护区

施工受到较判神多限制

深圳地铁将车辆基地咽喉区

布置为山体隧道形式

形成罕见的8线山体隧道群

最大限度降低

对山体的破坏及侵

同时,通过对车辆基地

体量庞大的建筑群进行功能整合

突破性打造多层立体库

大幅度地压缩了建筑占地面积

截止目前,深圳地铁凉帽山车辆基地

占地指标远低于全球同类基地

是全国首个大型多层综合车辆段

同时也是全国首个

地铁车辆立体架修段

车辆段高度集约的设计

实现了立体架修工艺的突破

在保障检修基地需求的情况下

大大节约用地

避让了水源保护区

使地铁建设与生态保护

实现相互平衡

地铁10号线还建有

全国首个全地下

双层地铁停车场

即益田停车场

益田停车场为全地下

双层五跨停车场

全场可同时停放列车16列

主要承担配备10号线列车

停放和列检、一般故障处理

清洗及定期消毒等日常维护工作

以及夜间工程车停放任务

轨道交通用之于民

生态文明护之于民

绿色、集约、高效

正是益田停车场的

设计建设的关键词

这座位于广深高速公路

与福荣路、菩堤路之间绿化用地

地下空间内的大型设施

在保证满足地铁停放需求

消防安全条件达标的情况下

充分利用了城市地下空间

完整地保留了地面景观设计

修建城市公园

此举既不破坏城市绿化

又节约了城市土地

体现了深圳地铁

对“生态文明建设”的积极响应

深圳地铁10号线

在“云计算”“大数据”等

技术的支持下

不断提高地铁服务精度

提升轨道交通运营安全

其中最引人注目的

是率先实践云平台调度指挥系统

这一系统综合承载了

地铁监控系统、乘客信息系统

安防系统、信号ATS系统的备用系统

车场智能化系统等

采用数据库云打破数据孤岛

整合地铁多源异构数据资源

盘活数据资产

使地铁10号线

在“一图全面感知”的基础上

实现“一键可知全局”和“一体运行联动”

这是国内轨道交通行业

首次应用云计算技术

综合承载地铁各类调度指挥系统

改变了传统模式下各类系统

“烟囱式”的垂直体系架构

利用云技术的弹性计算

地理分布、大规模、同一性

高级安全的特点

地铁10号线调度指挥系统

实现更加先进、可靠与节能

而调度系统的数智化升级

也为智慧地铁建设

提供了方向性的思路

将为深圳地铁发展带来全新动能

深圳地铁10号线

工程建设的创新突破

填补了深圳乃至国内轨道

交通建设的多项空白

也为高起点、高标准

打造深圳地铁“精品项目”打下基础

内容来源:深铁建设

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

地铁综合监控的系统构成概述

(1)硬件构成

综合监控系统方案充分考虑到轨道交通监控的高可靠性要求,特别是考虑到采用综合监控方式后,轨道交通各个专业系统的运行和维护都要在同一套系统上进行,对系统的可靠性要求更高。因此,方案采用的冗余机制涉及到中央主备实时服务器之间、中央主备历史服务器之间、车站主备实时服务器之间、车站主备工作站之间、车站主备FEP之间、中央局域网双网之间、车站局域网双网之间;不仅包括硬件设备,而且包括相应的软件,不仅包括运行的功能,而且包括数据流程,都是冗余的。多重冗余机制使得系统在任何单点故障和交叉故障时,都不影响ISCS运行。冗余配置的中央和车站服务器按照集群方式运行(设备不分主备,均衡负载,仅仅任务模块区分值班和备用),冗余配置的交换机和FEP等设备按照主备方式运行(设备区分值班和备用)。

详细的硬件构成如下:

第一层:中橡族央级综合监控系统 第一层包括冗余的实时服务器、冗余的历史服务器、外部磁盘阵列、磁带机、各种调度员工作站(如电调、环调、行调、维调和总调等)、NMS工作站罩纯、事件打印机、报表打印机、彩色图形打印机、冗余的带路由功能的网络交换机、FEP、大屏幕系统(OPS)、UPS等。

OCC配置的网络交换机,实现OCC所有网络资源的互联。交换机的端口数量和带宽的选择应充分考虑ISCS和网络通信设备的要求,网络交换机直接连接到通信传输网络。

在正常情况下,OCC的调度员通过调度员工作站,控制和监视各被集成系统。OCC的命令,通过ISCS网络发送到各被集成系统。

实时服务器主要功能是完成实时数据的采集与处理,从OCC向分布在各站点的被集成系统发送模式、程控或点控等控制命令。

历史服务器主要功能是完成历史数据的存储、记录和管理等功能。

第二层:车站级综合监控系统

第二层包括冗余的实时服务器、值班站长工作站、冗余的网络交换机、前端处理器(FEP)、IBP和UPS等。

车辆段停车场综合监控系统(DISCS)与车站综合监控系统(SISCS)一样,都属于第二层,只是配置有所不同。

FEP处理所有与被集成系统的接口,从FEP采集的数据通过车站交换机送到车站服务器。车站服务器、车站值班站长工作站和FEP等与网络交换机相联。

(2)软件构成

方案采用的综合监控系统软件无论从硬件、软件还是功能和运营,根据不同的特性进行了不同层次的划分,如中央级一般控制轨道交通全线,监控范围较广,响应时间为秒级,而就地级一般控制某一设备,监控范围较小,响应时间为毫秒级。各层既相互联系又相对独立,如车站级与就地级通过FEP连接,中央级和车站级通过骨干网连接,相互之间交换数据而不干扰。另外,本方案在设计时还考虑到中央级之上的更高一级管理,允许互联和交换信息。综合监控系统的层次结构如上图所示:

从平面结构而言, 采用通信中间件FoxBus,各个功能模块通过FoxBus组合在一起协调工作,本系统的平面结构如下图所示。FoxBus将软件模块组件化,允许各模块在硬件上任意分配,任何一台工作站都可以根据所登录用户的权限进行相应级别操作员的监视和操作。

方案采用硬件FEP将车站ISCS和就地级系统进行隔离,使得子系统和ISCS系统既相互联系又相互独立。一方面,子系统的异常不会影响ISCS的运行,使子系统的数据干扰范围得到控制。另一方面,ISCS系统的不正常不会影响各个子系统的运行,即使ISCS全部瘫痪,各个子系统能继续正常工作,保证轨道交通基础层的监控功能。针对西安的环境特点和气候条件,本方案中采用了大量抗电磁干扰、防潮防震的工业级产品,如FEP、交换机和服务器等均采用高可靠性产品。

ISCS的软件结构从体系结构的角度,分为系统软件、支撑软件和应用软件三层;从数据流程的角度,分为: 数据接口层; 数据处理层; 人机接口层。 数据接口层主要由FEP组成,完成数据的第一次收集和处理,FEP具备协议转换能力,采用嵌入式实时操作系统。ISCS系统通过前置通信机接收接入系统的信息并对无关的访问进行隔离。前置通信机具有转换各种硬件接口、软件协议的能力,接入系统通过前置通信机将数据传入ISCS系统,同时ISCS系统也通过前置通信物如咐机向各接入系统传送有关数据。同时FEP还起到隔离综合监控系统和相关系统的功能。

数据处理层主要由车站服务器和中心服务器组成,车站服务器完成数据的第二次处理和收集,将各FEP的数据进行集中和处理,供车站ISCS的人机界面显示和操作,收集的是车站范围内的数据;中心服务器除了完成本中心的数据处理和收集外,还要完成数据的第三次集中和处理,供控制中心的 ISCS人机界面显示和操作,收集的是全线范围内的数据。

人机接口层是ISCS提供的用于人机交互的图形接口,ISCS可以通过该接口向操作员显示设备状态信息、运行信息、故障信息、报警信息、统计报表信息等,同时,操作员可借助系统提供的一系列工具,在操作员工作站上对远程的设备进行监视、设置、控制等。

综合监控系统(ISCS)包括中心综合监控系统(CISCS)、车站综合监控系统(SISCS)、停车场和车辆段综合监控系统、网络管理系统(NMS)、设备维护管理系统(MMS)、培训管理系统(TMS)、软件测试平台(STP)等。 中心综合监控系统:对全线重要监控对象的状态、性能数据进行实时的收集处理,通过各种调度员工作站和大屏幕以图形、图像、表格和文本的形式显示出来,供调度人员控制和监视。并且根据一定的逻辑关系自动向分布在各站点的被监控对象或系统发送模式、程控、点控控制命令,或由调度员人工发布控制命令,从而完成对全线环境、设备的集中控制与显示。 车站综合监控系统:通过值班站长工作站、打印机设备实时的反映监控对象变化的状态信息并形成报表,同时记录下相关信息,更新相关数据。车辆段、停车场综合监控系统(DISCS)作为两个特殊站点,视为站级综合监控系统,对停车场、车辆段监控设备进行状态和性能参数地实时监控。 网络管理系统:搭建在中心,为网络系统与设备提供一系列的维护、监测与快速故障处理手段,允许网络管理员通过一个简单界面高效管理网络。 设备维护管理系统:设置在车辆段内,配置维护工作站、打印机等,实现对全线供电系统和机电设备系统复示和维修调度管理。 培训管理系统:可以单向访问运行系统,以便允许TMS使用真实的运行场景给学生示范。关于培训环境,系统提供以模拟相关系统规约到模拟现场环境的接口,教员在培训中能够修改仿真环境,并观察学员的响应,以在必要时提供建议。 软件测试平台:STP可对相关系统的软件功能进行软件测试,满足ISCS的软件安装测试及与各相关系统的接口测试的要求。STP与TMS硬件合并使用,软件分开配置。软件测试平台与综合监控系统监控网络连接,便于软件测试平台维护全线综合监控系统软件。

地铁盾构法隧道施工质量监控重点及对策?

地铁盾构法隧道施工质量监控重点及对策具体包括哪些内容呢?下面中达咨询为你介绍相关内容。

一引言

近年来,为适应城市发展需要和满足城市居民日益增长的出行需求,上海市地铁建设不断加快了建设步伐。根据上海地区软土地质的特点,地铁区间隧道建设一般都采用盾构法施工,盾构法施工是以盾构机为隧道掘进设备,以盾构机的盾壳作支护,用前端刀盘切削土体,由千斤顶顶推盾构机前进,以开挖面上拼装预制好的管片作衬砌,从而形成隧道的施工方法。盾构机的类型有多种,目前在上海地铁区间隧道建设中以土压平衡式盾构应用最为广泛。土压平衡盾构工艺原理是利用安装在盾构最前面的全断面切削刀盘,将正面土体切削下来的土进入刀盘后面的密封舱内,井使舱内具有适当压力与开挖面水土压力平衡,以减少盾构推进对地层土体的扰动,从而控制地表沉降或隆起,在出土时由安装在密封舱下部的螺旋运输机向排土口连续的将土渣排出。由于地铁盾构法隧道施工技术难度大、施工风险高、质量要求高、不可预测因素多。因此,监理人员应熟悉和掌握盾构法隧道施工监理监控重点及相应对策,在监理工作中才能真正做到有效地对施工质量进行监控,从而为业主提供优质的监理服务。 本人有幸参加了地铁二号线西延伸工程的施工监理工作,在区间隧道掘进施工监理过程中,通过不断摸索与总结,也积累了一些菲薄的工作清历槐经验, 以下就以土压平衡式盾构为例,对隧道掘进施工中监理应监控的重点及采取的对策,谈几点体会,以为抛砖引玉。

二正文

1.盾构始发(出洞)阶段

盾构始发(出洞)阶段是控制盾构掘进施工的首要环节。在盾构始发(出洞)前、后各项准备工作中监理需监督承包单位做好充分的技术、人员、材料、设备准备,并对盾构是否具备出洞条件予以审查,确保盾构在安全可靠的前提下能顺利出洞。

1.1盾构出洞土体加固

为了确保盾构出洞施工的安全和更好地保护附近的地下管线和建(构)筑物,盾构出洞前需对出洞区域洞烂答口土体进行加固。土体加固的方法较多(如水泥搅拌桩加固、旋喷桩加固等),但无论采用何种加固方法,对土体加固的效果检验始终应作为监理重点控制的内容。答友在确保加固效果满足设计要求前提下,才能同意盾构出洞,否则应督促承包方及时采取补救措施。针对土体加固监理人员应重点关注以下三方面:

⑴加固土体与地墙间隙封闭

由于加固土体与地墙之间存在间隙,监理在审查土体加固专项方案时应审查承包方是否在方案中有相应的措施,一般可采用注浆、旋喷等方法封闭该间隙,并监督承包方予以落实。

⑵加固土体的强度

加固土体的强度是否满足设计要求是衡量加固效果的首要指标,可通过对进出洞加固范围内不同深度土体采用钻芯取样检测的方式加以验证,监理人员应对承包方钻芯取样过程进行见证,确保取样工作的真实性。

⑶加固土体的均匀性

检验加固土体的均匀性目前尚无相应的工具、手段,可通过打探孔方式进行观察。监理人员应监督承包方在洞口割除围护结构背土面钢筋及凿除砼后,合理布置探孔(选择有代表性部位、数量一般不少于5个),现场观察探孔有无渗漏或流砂等异常情况,作为判断土体加固效果的辅助手段。

1.2盾构始发基座设置

盾构始发前需将盾构机准确的搁置在符合设计轴线的始发基座上,待所有准备工作就绪后,沿设计轴线向地层内掘进施工。因此,盾构出洞前盾构始发基座定位的准确与否,直接影响到盾构机始发姿态好坏。监理在检查盾构始发基座时,应重点复核以下内容:

⑴洞门位置及尺寸

在基座设置前,监理人员应采用测量工具对洞口实际的净尺寸、直径、洞门中心的平面位置及高程进行复核。

⑵盾构始发基座位置

盾构始发基座的设置依据不仅包括洞门中心的位置、还包括设计坡度与平面方向。在始发基座设置完毕,为确保盾构机能以最佳的姿态出洞。监理人员应复核基座顶部导向轨的位置(平面位置及高程),确保盾构搁置位置和方向满足设计轴线的要求。

1.3盾构机及后配套设备井下验收

盾构法隧道施工主要依靠盾构掘进机及配套设备完成掘进任务,由于受工作井内空间限制,需将盾构机及后配套台车分节吊装运至井下,并在井下安装、调试和试运转。土压平衡式盾构机及后配套设备构成主要由盾构壳体(包括刀盘及切口环、支撑环、盾尾)、推进系统、拼装系统、油脂润滑系统、监控系统等组成。监理在井下验收工作中的重点是对盾构机及后配套设备主要部件和系统检查和核对,并对试运转情况进行见证,在验收合格前提下可批准盾构机及配套设备投入使用。以下为本工程日本小松φ6340土压平衡式盾构机为例,对盾构机井下调试、验收项目作一介绍。

1.4 后盾支撑系统安装

盾构前进的动力是通过千斤顶来提供,而盾构始发时千斤顶顶力是作用在后盾支撑系统之上。一般后盾支撑体系是由钢反力架、钢支撑、临时衬砌(负环管片)等组成,监理在监督过程中应重点关注后盾支撑系统是否满足其技术要求,即后盾支撑系统必须有足够的刚度和强度,确保在顶力作用下不发生变形。

1.5洞门围护结构凿除(出洞侧)

地铁盾构法隧道施工一般以车站主体结构两端端头井作为盾构始发井和接收井。盾构在始发前需对始发井出洞侧洞口围护结构进行分次凿除(一般分为两次,第一次先割除背水面钢筋及凿除围护结构砼至迎水面钢筋,第二次出洞前再清除剩余部分),一方面清除盾构出洞前障碍,另一方面第一次凿除围护结构后通过打探孔可进一步直观的观察盾构出洞土体加固的效果。监理在洞门围护结构凿除后应对其后土体自立性、渗漏等情况进行观察,判断出洞区域土体的实际加固效果是否满足盾构安全出洞的要求。

1.6盾构出洞装置安装

由于隧道洞口与盾构之间存在建筑间隙,易造成泥水流失,从而引起地面沉降及周围建筑物、管线位移,因此需安装出洞装置。一般包括帘布橡胶板、圆环板、扇形板及相应的连接螺栓和垫圈等。监理应重点对帘布橡胶板上所开螺孔位置、尺寸进行复核,对出洞装置安装的牢固情况进行检查,确保帘布橡胶板能紧贴洞门,防止盾构出洞后同步注浆浆液泄漏。

1.7盾构始发出洞

盾构出洞准备工作就续后,为减少正面土体暴露时间,盾构从始发基座导轨上应及时向前推进,使盾构切口切入土层直至盾构壳体进入洞口的过程称为盾构始发出洞。该关键环节监理应进行旁站监督,并重点做好以下工作:

⑴观察割除围护结构迎水面钢筋后盾构机应迅速靠上洞口正面土体。

⑵观察盾构出洞期间洞口有无渗漏的状况,发现洞口渗漏督促承包单位及时封堵。

⑶检查前仓土压力设置是否合适,观察土仓有无砼块,发现后督促承包单位及时清除。

⑷第一环正环拼装前检查最后一环负环管片的拼装位置。

⑸检查千斤顶使用状况,防止盾构出洞后出现姿态上飘现象。

2.盾构试掘进和正式掘进阶段

根据盾构法施工工艺的特点,盾构安全出洞后需通过前100环试推进寻求最佳施工参数,为全线的正常推进提供符合实际土层特点的技术参数。不论在试掘进还是正式掘进阶段,监理可以通过观察盾构机控制室内仪器仪表显示的数据、审查承包单位上报的盾构掘进施工报表、通过监测数据分析隧道及地面沉降情况等手段进行动态监控,及时掌握和分析施工技术参数变化,检查盾构掘进中的姿态、管片拼装的质量、注浆作业的效果等,督促承包单位采取相应的措施确保盾构掘进施工质量和周边环境的安全。

2.1盾构机施工参数管理

由于土压平衡式盾构采用电子计算机控制系统,能自动控制刀盘转速、盾构推进速度及前进方向,并及时反映掘进中的施工参数。这些施工参数的确定是根据地质条件情况、环境监测情况,进行反复量测、调整和优化的过程,若发现异常需及时调整。因此,对盾构施工参数的管理应贯穿于盾构掘进过程的始终。监理在监督过程中可通过审查承包方施工报表,观察盾构机控制室内监控设备等手段,及时收集和分析有关施工参数的信息,通过信息反馈,动态掌握施工参数的变化。盾构机监控系统能反映的施工参数很多(如土压力、刀盘油压和转速、盾构掘进速度等),对于这些施工参数的管理监理在工作中应重点关注以下几项:

2.1.1土压力

土压平衡式盾构机掘进的原理是建立开挖面前后水土压力平衡。在盾构掘进不同阶段,盾构机工况是从非土压平衡通过在初始出洞阶段逐步过渡到土压平衡,再到进洞阶段由土压平衡逐步过度到非土压平衡,即土压力设定是变化的(在理论数值上它与土体容重、覆土深度、侧向土压力系数有关),施工中需要不断通过不同的土质、覆土厚度、结合环境监测的数据进行调整。因此,平衡土压值的设定是土压平衡式盾构施工关键,监理应予以重点关注,并通过计算理论土压力与实际设定土压力进行比较,判断实际设定土压力是否满足施工的需要,督促承包方合理的设定土压力。

2.1.2出土量

土压平衡式盾构是以切口环作为密闭土仓,盾构推进中切削后土体进入密闭土仓,随着进土量增加建立一定的土压力,再通过螺旋输送机完成排土,而土仓压力值是通过出土量来控制的。因此,出土量的多少、快慢与设定的土压力值密切相关,监理人员可通过计算每环理论出土量与实际每环出土量相比较,判断出土量是否正常。

2.1.3掘进速度

盾构掘进的速度主要受盾构设备进、出土速度的限制,若进出土速度不协调,极易出现正面土体失稳和地表沉降等不良现象。因此,监理应重点督促承包方均衡连续组织掘进作业,当出现异常情况时(如遇到阻碍、遇到不良地质、盾构姿态偏离较大等),应及时停止掘进,封闭正面土体,查明原因后采取相应的措施处理。

2.1.4千斤顶推力

盾构是依靠安装在支撑环周围的千斤顶推力向前推进的,推力的大小与盾构掘进所遇到的阻力有关,正确的使用千斤顶是盾构是否能沿设计轴线(标高)方向准确前进的关键。因此,在每环推进前,监理应根据前面几环承包方申报的盾构推进的现状报表,分析盾构趋势,督促承包方正确的选择千斤顶的编组,合理地进行纠偏。

2.2盾构掘进姿态控制 

所谓盾构姿态具体是指盾构掘进中现状空间位置(包括高程和平面位置)。盾构姿态控制就是将盾构轴线控制在与设计允许偏差范围内。盾构姿态控制的好坏,不仅关系到盾构轴线是否能在已定的空间内在设计轴线允许偏差内推进,而且还影响到后续工序管片拼装的质量(只有盾构掘进姿态控制在允许误差之内,才能确保管片拼装能在理想的位置)。因此,在盾构掘进阶段对盾构姿态的控制始终应做为监理人员监督的重中之重。根据《地下铁道工程施工及验收规范》(GB50299-1999)8.4.4条(2003版)规定盾构掘进中应严格控制中线平面位置和高程,其允许偏差均为±50mm,发现偏离应逐步纠正,不得猛纠硬调。监理在实施对盾构姿态控制时,应严格以规范要求为控制准则。监理在工作中针对盾构姿态的控制,首先应熟悉和掌握设计线型要求,即隧道平面曲线和竖曲线的线型情况(包括里程、长度、坡度、半径等),其次还应重点监控以下内容:

2.2.1盾构姿态测量数据

盾构姿态测量数据包括自动测量数据(盾构机装有自动测量系统,能反映盾构运行的轨迹和瞬时姿态,动态监测盾构姿态数据)和人工测量复核数据(对自动测量数据正确性进行检测和校正),监理人员可对两类数据综合分析、比较,动态掌握数据变化情况,正确指导盾构正确、安全地推进。

2.2.2盾构纠偏量

盾构在推进过程中不可能一直处于理想状况(尤其是在曲线段),会产生不同程度的偏向。影响盾构的偏向的因素很多,也很复杂(如地质条件的因素、机械设备的因素、施工操作的因素等等),施工中一般可通过调整千斤顶编组或纠偏材料(粘贴在管片上)进行纠偏。监理工程师不仅应做到及时根据盾构姿态测量数据,分析盾构姿态,督促承包商控制好掘进方向,平稳地控制盾构推进的轴线。而且在每环管片拼装前对盾构姿态进行复查,发现偏差,督促承包方合理的制定纠偏方案和纠偏量,及时采取纠偏措施,避免误差累积。

2.3管片拼装控制

根据盾构法施工工艺管片成环的特点:管片是盾壳的保护下在盾尾拼装成环形成隧道的。

它是盾构法施工的关键工序,管片拼装的质量好坏直接影响到隧道结构的安全和使用功能。因此,为确保管片拼装的质量满足设计和规范的要求,监理应重点抓好以下环节:

2.3.1管片制作监控

管片制作质量好坏是确保管片拼装质量的首要环节,一般管片制作均由预制构件厂提前生产,以满足现场盾构掘进施工的需要。《地下铁道工程施工及验收规范》(GB50299-1999)8.11条对管片制作质量提出明确的要求。监理对管片制作监理人员在监督管片制作过程中应严把质量关,在满足以下条件的前提下才能允许管片出厂。

⑴制作管片模具的精度符合规范要求。

⑵制作管片类型、管片脱模后成品外观质量及尺寸偏差满足设计和规范要求。

⑶管片的砼抗压强度及抗渗指标满足设计要求。

⑷管片的检漏检测和三环试拼装检验符合规范要求。

2.3.2管片进场检查

管片制作合格后需根据现场施工需要分批由预制厂运输至现场。监理对进场管片的检查是对管片制作质量的第二次复查。检查的重点包括:

⑴根据管片排序图核对进场管片规格是否满足施工需要。

⑵审查进场管片出厂质量合格证明文件。

⑶复查进场管片外观质量,若发现缺陷应及时督促承包单位进行修补。

2.3.3管片拼装前检查

根据管片接缝防水设计要求一般需粘贴防水密封垫,监理工程师应在管片拼装前对密封垫粘贴位置和粘贴质量逐块检查。

2.3.4管片成环后检查

管片成环后的质量是衡量和判断盾构法隧道质量合格与否的主要依据。(《地下铁道工程施工及验收规范》(GB50299-1999)8.6.5条对管片拼装质量提出了具体的要求(本工程以20环为一个检验批进行验收)。监理在进行检查中应重点检查以下内容:

⑴高程和平面偏差。

⑵纵、环向相邻管片高差和纵、环向缝隙宽度。

⑶纵、环向相邻管片螺栓连接。

2.3注浆作业监控

盾构法工艺施工隧道,由于盾构壳体与拼装管片之间存在建筑空隙,如不及时填充,势必产生土层扰动变形,造成地面变形(严重的危及到地面建筑和地下管线的安全使用)或隧道结构变形。注浆作业是盾构法隧道施工控制地面和隧道结构变形主要技术措施之一,通过压浆填充建筑空隙控制变形量。施工中的注浆工艺分为同步注浆、衬砌后补注浆,无论采用哪种工艺,监理在监督过程中应通过分析监测资料(以控制地面和隧道结构变形为原则)、审查拌制和注浆施工记录、对每作业班拌制注浆液试块制作见证送检等手段来综合分析注浆作业的效果,判断注浆作业是否达到控制变形的成效,并重点监督浆液配合比、注浆量、注浆压力等主要技术指标。

3盾构接收(进洞)阶段

盾构接收(进洞)阶段掘进是盾构法隧道施工最后一个关键环节。盾构能否顺利进洞关系到整个隧道掘进施工的成败。在盾构进洞前后监理需监督承包单位做好充分的盾构接收的准备工作,确保盾构以良好的姿态进洞,就位在盾构接收基座上。

3.1盾构进洞土体加固

盾构进洞区域土体加固一般与出洞区域土体加固是同时进行,对盾构进洞土体加固效果的检验可参照对盾构出洞土体加固。

3.2盾构接收基座设置

盾构接收基座用于接收进洞后的盾构机,由于盾构进洞姿态是未知的。在盾构接收(进洞)前监理仍需复核接收井洞门中心位置和接收基座平面、高程位置(一般以低于洞圈面为原则),确保盾构机进洞后能平稳、安全推上基座。

3.3进洞前盾构姿态监控

在盾构进洞前100环监理对已贯通隧道内布置的平面导线控制点及高程水准基点做贯通前复核测量,是准确评估盾构进洞前的姿态和拟定进洞段掘进轴线的重要依据。监理复核数据应通过与承包方复核数据的比较,分析误差是否在允许偏差之内,从而正确的指导进洞段盾构推进的方向。

3.4洞门围护结构凿除(进洞侧)

盾构进洞前需对接收井内围护结构背水面钢筋进行割除及砼凿除,通过打探孔实际验证盾构进洞区域土体加固的效果。监理在洞门围护结构凿除后同样需对其后土体自立性、渗漏等情况进行观察,判断进洞区域土体的实际加固效果是否满足盾构安全进洞的要求,否则应督促承包方采取补救措施。

3.5盾构接收进洞

盾构接收(进洞)准备工作就续后,盾构机向前推进,在前端刀盘露出土体直至盾构壳体顺利推上接收基座的过程称为盾构接收进洞。该关键环节监理应进行旁站监督,并重点做好以下工作:

⑴观察进洞洞口有无渗漏的状况,发现洞口渗漏督促承包单位及时封堵。

⑵督促承包方及时安装洞口拉紧装置,并检查其牢固性。

三结束语

盾构法隧道工程是一项综合性施工技术(如包括盾构机械技术、隧道测量技术、地下防水技术、盾构施工安全技术等),通过多年来前人的不断摸索和实践已经形成了一套比较成熟的施工技术,尤其是近年来在上海地铁建设中得到了广泛的应用,盾构法施工技术也在原有的基础上不断的发展(单元、小直径逐步向多元、大直径),而且国产盾构的制造及施工技术也取得了可喜的成绩。这些都对监理人员的素质提出了更高的要求,更需监理人员通过不断学习和实践,熟悉这些相关的施工技术,掌握盾构法隧道施工质量监控重点及相应的对策,才能为今后盾构法隧道施工质量、施工安全提供有力的监督管理。

更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

地铁电力监控系统的重点与是什么

1. SCADA系统简述

SCADA系统是依赖计答悄算机技术进行数据收集与系统监测和控制的自动化系统。该系统已核举链经在许多产业领域,尤其是电力系统的管理中得到了普及应用。其中,电力监控系统,也就是PSCADA系统,以计算机、通信设施、监控单元为基础工具,为变配电系统的实时信息收集、开关情况检查及远程监控提供了现实平台,它可以和检查、监控设施构建成任意繁复的监管控制系统,在变配电监管控制中发挥了重要效用,有利于公司消除故障、减小运作投入,缩短生产时间,加快变配电运行过程中事故的应对速率。该系统具有收集数据完整、决策效率高、掌握信息准确、故障判断及时等优点,已经在地铁的供电监管中得到广泛运用,加快了电力系统的自动化管理进程的发展。

相较于国外先进的SCADA系统发展水平,我国的SCADA系统研究起步较晚,很多SCADA产品与仪器仍然处于进口阶段,在SCADA系统上的技术研究和理论水平都比不上发达国家。但是随着计算机技术和信息科学技术在我国的普及与广泛应用,我国在SCADA系统的研究与应用也逐步呈现出欣欣向荣的状态,并朝着集成化、综合化、自动化的方向发展。尤其随着电力监控系统在地铁供电监管综合系统中的应用,进一步推动了我国在SCADA系统的研究与技术完善。

2. 电力监控系统(PSCADA)在地铁中的应用

电力监控系统(PSCADA)将各种先进信息技术集于一体,实现了对变电系统的数据收集和储存,故障的分析和诊断以及系统的修复与维护等功能。其中在系统数据收集功能中,主要是对变电站的一些设备电压、电流、运行参数及耗电量等基本情况进行收集和整理;故障的分析和诊断正是通过对变电系统运行储存数据的分析来实现的,并通过人为管理,实现对变电站系统的修复与维护。电力监控系统(PSCADA)具有改善变电站运行安全可靠水平、改善运行速率、减少运行成本投入以及保证供电品质等作用,相较于二次变电设备,该系统大大减省了接线工作量,逐渐取代二次变电设备,在变电站中得到普及应用。但是电力监控系统的实施需要满足一些条件,比如,针对电压量要求不高的的变电站,要尽量使用自动化的软件和技术,达到对人力资源和物力资源节省的目的;在电压量要求较高的变电站中,要采用比较先进的测控软件和控制方法,达到对技术、专业及运行等方面的要求等。改孙

自动变形监测系统在地铁结构变形监测中的应用?

自动变形监测系统在地铁结构变形监测中的应用有哪些呢,下面中达咨询招投标老师为你解答以供参考。

在城市基础设施中,城市的交通体系位居首位,而地铁在城市综合交通体系中一般都担当骨干。同时,地铁沿线非地铁工程建筑也越来越多。为了保证地铁的正常运营,必须对地铁进行变形监测,特别是在非地铁施工可能影响到地铁结构时。广州地铁一号线已正常运营3 a 。在某一地铁站附近设立商业城,需要挖掘12 m 深的基坑。为了监测基坑开挖对车站结构的影响,而又不中断地铁的正常运营,就不能采取传统的监测手段, 必须寻求新的监测方法来保证地铁的安全。受广州地铁保护办的委托,我们开发了自动变形监测系统,对地铁结构进行变形监测。

1监测系统组成

如图1 所示,监测系统由全站仪观测站、基准点(2 个断面, J11 、J12 与J21 、J22)、变形点(5 个断面,D11 、D12 、D13 与D21 、D22 、D23 、D24 等) 、中继站计算机和远程监控计算机等组成。全站仪观测站与中继站计算机由供电和通讯电缆联接起来, 远程计算机通过因特网控制中继站计算机,可监视并控制监测系统的运行。

2. 1全站仪观测站

特制的仪器墩安装在地铁左行线的站台下, 完全符合“区间直线地段矩形隧道及车辆界限”的有关安全规定。

自动化全站仪TCA 通过基座固定在仪器墩上,并用特制的D 型玻璃钢罩保护起来。为了便于观察监控,在站台对面的站墙上安装一块60 cm ×80 cm 的平面玻璃镜,在仪器站两边安装照明设备。这样管理人员在站台上就可通过平面镜来观察仪器的运行情况。

2. 2基准点和变形点

基准点和变形点均设置在地铁站的左行线上。在仪器站到基坑的方向上,从30 m 处开始, 每隔15 m 设置一变形点监测断面(如图2 所示), 在每一个断面上安装3~4 个反射棱镜,分布在铁轨中央1 个,站墙上、中、下各1 个(如图3 所示) 。基准点设置在仪器站的另一侧,离仪器站65 m 处为第1 个基准断面,40 m 处为第2 个基准断面。每个断面上安装2 个反射棱镜,分布在铁轨中及站墙下。所有反射棱镜均采用52 mm 直径的角反射棱镜,有L 型和O 型两种,根据不同的现场条件来选用。设置基准点与变形点的位置特别要利用仪器的小视场功能,使之均匀分布在仪器望远镜的视场内,相互不滚野晌受干扰。

2. 3中继站计算机

中继站计算机设置在地铁站的监控亭内,选用“联想”商用机。使用的软件为信息工程大学测绘学院和徕卡郑州欧亚测量系统有限公司开发的“ADMS 自动变形监测软件”,完全中文界面,便于操作与二次开发。

2. 4供电和通讯系统

由于整个系统工作在地铁运行的环境中,220 V 主电网的供电应该是有保证的,因此无需设置U PS 供电系统。220 V 的交流供电由站台照明配电室提供线路。由于全站仪观测站与中继站计算机的通讯在100 m 以内,经特殊处理后,RS232 接口可直接通讯。

3监测系统软件ADMS 简介

ADMS ( Automatic Deformation Monitoring System) 自动变形监测软件是在学习、消化、吸收瑞士Leica 公司研制的自动极坐标测量系统AP2 SWin(Automatic Polar System for Windows) 的基础上,通过实际的工程应用,并结合国内用户的实际需求,研制出的本地化智能型自动变形监测中文软件。

ADMS 软件提供了以下功能:对所要测量的点位进行初始的学习测量;在用户设置的时段内自动地进行测量;当目标被遮挡及测量超限时智能化地处理;“小视场脊嫌”功能,当隧道中同一侧的测点很多时,全站仪就会照错棱镜,该功能使仪器视场变小,从而避免了这个问题;实时多重差分改正,最大限度地消除或减弱多种误差因素;测量结果实时显示,并可以以ASCII 码大锋文件输出; 变形趋势实时图解显示,并可按照用户所要求的格式进行报表输出;变形量超过限差值时自动报警;可以自动地执行用户编制的外部程序,具有良好的开放性;数据库容量巨大,测量周期数没有限制, 并且每个测量周期的测点数也没有限制。

本软件还可以对数据库进行适当的压缩以更好地利用存储空间;测量数据可以实时采集,也可以事后输入;多重差分可以实时改正测量数据,也可以事后进行;计算机突然断电后,再来电开机, 将自动运行ADMS , 自动初始化全站仪,按照原来设置的各项参数自动开始下一个周期的测量。

4系统运行配置介绍

系统的变形点19 个,基准点4 个,共计23 个,每个点正倒镜观测2 测回,全部测完23 个点称为1 个周期,用时约20 min 。每个小时测量1 次,每天可采集24 个周期的原始数据。在每小时中, 测量约占20 min , 观测结束后15 min 全站仪自动关机,25 min 后再次开始下一个周期的测量。

5测量数据分析

为监测地下商业城南端近地铁段基坑围护结构的变形,采用传统方法在基坑南侧(地铁段) 布设了4 个测斜管(见图2) ,以观测地铁站墙的变形。测斜管采用美国SINCO 公司生产的数字测斜仪,埋设与站墙同深度,为13 m 。每0. 5 m 测试1 点,经过数据处理,得到基坑开挖过程中站墙在不同深度的变形。

表1 为基坑开挖进程。

在基坑开挖进行锚杆施工过程中,1 、3 、4 号图4 为2 号测斜管从8 月17 日9 月13 日的观测测斜管受到损坏,只有2 号测斜管可以进行监测。数据按不同的深度绘制的位移量图形,图中的位移向基坑内为正,向基坑外为负。靠近2 号测斜管的为第3 、4 变形监测断面。图4 所示的虚线(8. 4 m 深度) 处与变形监测点D34 、D44 同高程。图5 、图6 为全站仪测得的变形点D34 、D44 从8 月12 日9 月26 日的位移数据,其中X 方向向基坑内为正, 横轴的日期为月日, 如“812”表示8 月12 日。

全站仪观测的变形趋势与测斜管观测的结果一致。由于测斜管埋设在土中,而全站仪观测的棱镜安装在地铁的结构上, 故棱镜的位移量较小。

采用ADMS 系统进行地铁结构的自动变形监测,具有以下特点与优点:

1) 在无人值守的情况下,可以实现全天24 h 连续地自动监测。在列车运行时,系统也可以自动进行监测,克服了传统测量方法的不足,节约了大量的人力,为地铁提供了实时的安全运营保障。

2) 建立高精度的基准点,采用实时差分式的测量方案,可以最大限度地消除或减弱多种误差因素从而大幅度地提高测量结果的精度。

3) 简化了气象等附加设备,为系统在计算机控制下实现全自动、高可靠的变形监测,创造了有利条件。

4) 实时进行数据处理、数据分析、报表输出及提供图形等。

5) 自动报警。

6) 在短时间内同时求得被测点位的3 维坐标,可根据设计方案的要求作全方位的预报。

7) 系统维护方便,运行成本低。

面对广泛的非地铁项目的工程建筑活动,采用ADMS 系统的监控方法,可以有效地保护地铁结构安全运行。而且这种保护行为,时间上与地铁运营线路的生命周期共存,空间上与地铁运营线路的网络拓展规模同在,其意义重大。

更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

关于地铁施工监控系统和地铁施工监控系统的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。